ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 27-29 НЕДЕЛИ

ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 26-Я НЕДЕЛЯ

ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 25-Я НЕДЕЛЯ

ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 24-Я НЕДЕЛЯ

24-Я НЕДЕЛЯ (6-Я НЕДЕЛЯ 3 ЧЕТВЕРТИ)
ПОЛУИНВАРИАНТЫ
  1. На материке есть несколько стран, в каждой из которых правит либо партия правых, либо партия левых. Раз в месяц в одной из стран может поменяться власть. Это может произойти только в случае если в большинстве стран, граничащих с этой страной, правит другая партия. Докажите, что смены партий не могут продолжаться бесконечно.  

  2. Шоколадка имеет размер 4×10 плиток. За один ход разрешается разломать один из уже имеющихся кусочков на два вдоль прямолинейного разлома. За какое наименьшее число ходов можно разбить всю шоколадку на кусочки размером в одну плитку? 

  3. В стране дальтоников все города подняли над ратушами флаги — черно-синие либо бело-золотые. Каждый день жители узнают цвета флагов у соседей в радиусе 100 км. Один из городов, где у большинства соседей флаги другого цвета, меняет свой флаг на этот другой цвет. Докажите, что со временем смены цвета флагов прекратятся. 

  4. На длинной скамейке сидели мальчик и девочка. К ним по одному подошли ещё 20 детей, и каждый из них садился между какими-то двумя уже сидящими. Назовем девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика - отважным, если он садился между двумя соседними девочками. Когда все сели, оказалось, что мальчики и девочки сидят на скамейке, чередуясь. Сколько из них были отважными? 

  5. Шеренга новобранцев стояла лицом к сержанту. По команде "налево" некоторые повернулись налево, а остальные - направо. Всегда ли сержант сможет встать в строй так, чтобы с обеих сторон от него оказалось поровну новобранцев, обращенных к нему лицом? 

  6. На плоскости даны 10 точек: несколько из них — белые, а остальные — чёрные. Некоторые точки соединены отрезками. Назовем точку особой, если более половины соединённых с ней точек имеют цвет, отличный от ее цвета. Каждым ходом выбирается одна из особых точек (если такие есть) и перекрашивается в противоположный цвет. Докажите, что через несколько ходов не останется ни одной особой точки.

ПОДРОБНЕЕ: https://sites.google.com/view/irvirraf/%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0-%D0%BA-%D0%BE%D0%BB%D0%B8%D0%BC%D0%BF%D0%B8%D0%B0%D0%B4%D0%B5/3-%D1%87%D0%B5%D1%82%D0%B2%D0%B5%D1%80%D1%82%D1%8C/5-%D0%BD%D0%B5%D0%B4%D0%B5%D0%BB%D1%8F

ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 23-Я НЕДЕЛЯ

23-Я НЕДЕЛЯ (5-Я НЕДЕЛЯ 3 ЧЕТВЕРТИ)
ПРИНЦИП ДИРИХЛЕ

1. В пятых классах 34 ученика. Можно ли утверждать, что среди них найдётся хотя бы  2 ученика, фамилии которых начинаются с одной и той же буквы?
2. В лесу растёт миллион ёлок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся 2 ёлки с одинаковым количеством иголок.
3. Дано 12 целых чисел. Докажите, что из них можно выбрать 2, разность которых делится на 11.
4. 37 кроликов разместили в 7 клетках. Докажите, что хотя бы в одной клетке будет нечётное число кроликов.
5. 15 белок собрали 100 орехов. Докажите, что какие – то две из них собрали одинаковое количество орехов.
6. Докажите, что среди любых 6 человек есть либо трое попарно знакомых, либо трое попарно незнакомых.

ПОДРОБНЕЕ:https://sites.google.com/view/irvirraf/%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0-%D0%BA-%D0%BE%D0%BB%D0%B8%D0%BC%D0%BF%D0%B8%D0%B0%D0%B4%D0%B5/5-%D0%BD%D0%B5%D0%B4%D0%B5%D0%BB%D1%8F

ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 22-Я НЕДЕЛЯ

ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 21-Я НЕДЕЛЯ

21-Я НЕДЕЛЯ (3-Я НЕДЕЛЯ 3 ЧЕТВЕРТИ)
ЗАДАЧИ НА РАСКРАСКИ
  1. Можно ли разрезать квадрат 10 х 10 на прямоугольники 1 х  4? 

  2. Отметьте на доске  8 х 8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.  

  3.  Фигура «верблюд» ходит по шахматной доске ходом типа (1, 3). Можно ли пройти ходом «верблюда» с произвольного поля на соседнее? 

  4. В каждой клетке доски в 5 х 5 клеток сидел жук. Затем каждый жук переполз на соседнюю (по стороне) клетку. Докажите, что осталась хотя бы одна пустая клетка. 

  5. Дана доска в 19 х 19 клеток. На каждой клетке поставлено по шашке. Можно ли переставить шашки так, чтобы каждая шашка оказалась на соседней клетке (по горизонтали или по вертикали, но не диагонали)? 

  6. Докажите, что плоскость можно раскрасить девятью красками так, что никакие две точки одного цвета не будут находиться на расстоянии 1 м друг от друга. 

ПОДРОБНЕЕ: ​https://sites.google.com/view/irvirraf/%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0-%D0%BA-%D0%BE%D0%BB%D0%B8%D0%BC%D0%BF%D0%B8%D0%B0%D0%B4%D0%B5/3-%D1%87%D0%B5%D1%82%D0%B2%D0%B5%D1%80%D1%82%D1%8C/3-%D0%BD%D0%B5%D0%B4%D0%B5%D0%BB%D1%8F​​​

---

ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 20-Я НЕДЕЛЯ

20-Я НЕДЕЛЯ (2-Я НЕДЕЛЯ 3 ЧЕТВЕРТИ)
ЗАДАЧИ НА РАЗРЕЗАНИЕ
  1. Ваня хочет разрезать фигуру на рисунке на восемь доминошек и один квадрат 1*1. Сколькими способами он может это сделать? 

  2. Можно ли треугольник разрезать так, чтобы получилось 3 четырёхугольника?

  3. Разрежьте квадрат размером 4×4 на 4 равные фигуры. Резать можно только по стороне квадрата 1×1.
  4. Как разрезать прямоугольник, длина которого 16см, а ширина 9см, на две равные части, из которых можно составить квадрат?

ПОДРОБНЕЕ: ​https://sites.google.com/view/irvirraf/%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0-%D0%BA-%D0%BE%D0%BB%D0%B8%D0%BC%D0%BF%D0%B8%D0%B0%D0%B4%D0%B5/3-%D1%87%D0%B5%D1%82%D0%B2%D0%B5%D1%80%D1%82%D1%8C/2-%D0%BD%D0%B5%D0%B4%D0%B5%D0%BB%D1%8F​​​

ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 19-Я НЕДЕЛЯ

19-Я НЕДЕЛЯ (1-Я НЕДЕЛЯ 3 ЧЕТВЕРТИ)

ТУРНИРЫ

  1.  а) В однокруговом шахматном турнире с восемью участниками все партии закончились вничью. Сколько всего очков набрали участники? А сколько всего партий было сыграно? б) В незаконченном шахматном турнире сыграно пока только 15 партий. Сколько всего очков успели набрать участники? в) Закончился однокруговой шахматный турнир с 16 участниками. Чему равна сумма набранных очков? 
  2. В однокруговом турнире четырёх команд с начислением очков по системе 2–1–0 команда А набрала 5 очков, Б — 2 очка, В — 1 очко. Какое место заняла команда Г? 
  3. В однокруговом турнире участвовали шахматисты А, Б, В, Г и Д. При равенстве очков место определялось по дополнительным показателям. Известно, что Б занял второе место и набрал больше очков, чем В, Г и Д вместе. Каков результат партии между А и Б?
  4. В однокруговом футбольном турнире команд А, Б, В, Г команда А заняла первое место, а команда Б набрала 3 очка и заняла «чистое» второе место (то есть команда выше неё набрала больше очков, а каждая команда ниже неё — меньше очков). Восстановите результаты всех матчей.
  5. В футбольном турнире пяти команд победитель набрал столько очков, сколько все остальные вместе взятые. Сколько ничьих было в этом турнире?
  6. В однокруговом шахматном турнире участвовали 8 человек и все они набрали разное количество очков. Шахматист, занявший второе место, набрал столько же очков, сколько четыре последних вместе. Как сыграли между собой шахматисты, занявшие третье и седьмое места?
ПОДРОБНЕЕ: https://sites.google.com/view/irvirraf/%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0-%D0%BA-%D0%BE%D0%BB%D0%B8%D0%BC%D0%BF%D0%B8%D0%B0%D0%B4%D0%B5/3-%D1%87%D0%B5%D1%82%D0%B2%D0%B5%D1%80%D1%82%D1%8C/1-%D0%BD%D0%B5%D0%B4%D0%B5%D0%BB%D1%8F