
ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 33 НЕДЕЛЯ
ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 32 НЕДЕЛЯ
ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 31 НЕДЕЛЯ

ПОДРОБНЕЕ: https://sites.google.com/view/irvirraf/%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0-%D0%BA-%D0%BE%D0%BB%D0%B8%D0%BC%D0%BF%D0%B8%D0%B0%D0%B4%D0%B5/4-%D1%87%D0%B5%D1%82%D0%B2%D0%B5%D1%80%D1%82%D1%8C/1-%D0%BD%D0%B5%D0%B4%D0%B5%D0%BB%D1%8F
ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 27-29 НЕДЕЛИ

ВЕСЕННЯЯ ОЛИМПИАДА, 5 КЛАСС

ПОДРОБНЕЕ: ОЛИМПИАДА
ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 26-Я НЕДЕЛЯ
ИНВАРИАНТЫ.ОСТАТКИ

ПОДРОБНЕЕ: https://sites.google.com/view/irvirraf/%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0-%D0%BA-%D0%BE%D0%BB%D0%B8%D0%BC%D0%BF%D0%B8%D0%B0%D0%B4%D0%B5/3-%D1%87%D0%B5%D1%82%D0%B2%D0%B5%D1%80%D1%82%D1%8C/8-%D0%BD%D0%B5%D0%B4%D0%B5%D0%BB%D1%8F
ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 25-Я НЕДЕЛЯ
ИНВАРИАНТЫ. ЧЁТНОСТЬ

ПОДРОБНЕЕ: https://sites.google.com/view/irvirraf/%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0-%D0%BA-%D0%BE%D0%BB%D0%B8%D0%BC%D0%BF%D0%B8%D0%B0%D0%B4%D0%B5/3-%D1%87%D0%B5%D1%82%D0%B2%D0%B5%D1%80%D1%82%D1%8C/7-%D0%BD%D0%B5%D0%B4%D0%B5%D0%BB%D1%8F
ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 24-Я НЕДЕЛЯ
ПОЛУИНВАРИАНТЫ

На материке есть несколько стран, в каждой из которых правит либо партия правых, либо партия левых. Раз в месяц в одной из стран может поменяться власть. Это может произойти только в случае если в большинстве стран, граничащих с этой страной, правит другая партия. Докажите, что смены партий не могут продолжаться бесконечно.
Шоколадка имеет размер 4×10 плиток. За один ход разрешается разломать один из уже имеющихся кусочков на два вдоль прямолинейного разлома. За какое наименьшее число ходов можно разбить всю шоколадку на кусочки размером в одну плитку?
В стране дальтоников все города подняли над ратушами флаги — черно-синие либо бело-золотые. Каждый день жители узнают цвета флагов у соседей в радиусе 100 км. Один из городов, где у большинства соседей флаги другого цвета, меняет свой флаг на этот другой цвет. Докажите, что со временем смены цвета флагов прекратятся.
На длинной скамейке сидели мальчик и девочка. К ним по одному подошли ещё 20 детей, и каждый из них садился между какими-то двумя уже сидящими. Назовем девочку отважной, если она садилась между двумя соседними мальчиками, а мальчика - отважным, если он садился между двумя соседними девочками. Когда все сели, оказалось, что мальчики и девочки сидят на скамейке, чередуясь. Сколько из них были отважными?
Шеренга новобранцев стояла лицом к сержанту. По команде "налево" некоторые повернулись налево, а остальные - направо. Всегда ли сержант сможет встать в строй так, чтобы с обеих сторон от него оказалось поровну новобранцев, обращенных к нему лицом?
На плоскости даны 10 точек: несколько из них — белые, а остальные — чёрные. Некоторые точки соединены отрезками. Назовем точку особой, если более половины соединённых с ней точек имеют цвет, отличный от ее цвета. Каждым ходом выбирается одна из особых точек (если такие есть) и перекрашивается в противоположный цвет. Докажите, что через несколько ходов не останется ни одной особой точки.
ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 23-Я НЕДЕЛЯ
ПРИНЦИП ДИРИХЛЕ

1. В пятых классах 34 ученика. Можно ли утверждать, что среди них найдётся хотя бы 2 ученика, фамилии которых начинаются с одной и той же буквы?
ПОДРОБНЕЕ:https://sites.google.com/view/irvirraf/%D0%BF%D0%BE%D0%B4%D0%B3%D0%BE%D1%82%D0%BE%D0%B2%D0%BA%D0%B0-%D0%BA-%D0%BE%D0%BB%D0%B8%D0%BC%D0%BF%D0%B8%D0%B0%D0%B4%D0%B5/5-%D0%BD%D0%B5%D0%B4%D0%B5%D0%BB%D1%8F