ДЕНЬ ЧИСЛА ПИ - 2025 (14.03.2025)


Программа дня числа  ПИ

№ п/п

Вид деятельности

Время проведения

Место проведения

Участники 

Ответственные 

1.  

Информационная перемена

7.45-8.15

Фойе 1-го этажа

Учащиеся и учителя школы

Шилько И.В., учащиеся 

10 «Б» класса

2.  

Уроки занимательной математики для учащихся 1-9 классов

В течение дня

Учебные кабинеты

Учащиеся 1-9 классов

Шилько И.В., учащиеся 10-х классов

3. 

Занимательные перемены

В течение дня

Фойе 3 этажа

Учащиеся 1-4 классов

Шилько И.В., учащиеся 5-х и 10-х классов

Разгадай ребус

9.55-10.15

Вопрос дня

11.00-11.15

Задача дня

12.00-12.15

Математические игры

13.00-13.20

4.  

Искательные перемены

9.55-10.15

11.00-11.15

12.00-12.15

13.00-13.20

Фойе 4 этажа

Учащиеся 5-6 классов

Шилько И.В., Старовойтова Н.М., Судорева Т.С., Лукашевич К.С.

Квест-игра 

«В поисках 

π-сокровищ»

5. 

Познавательные перемены

В течение дня

Кабинет 409

Учащиеся 7-11 классов

Шилько И.В.

Конкурс знатоков числа π

Просмотр видеороликов о числе π

Конкурс на лучшую оду числу π

6. 

Открытие клуба друзей числа  

13.20

Актовый зал

Учащиеся 5-11 классов

Шилько И.В.

Математический бой между командами учащихся 10 и 11 профильных математических классов

Торжественное посвящение в члены клуба друзей числа π

 

фоторепортаж​​​

КАЛЕНДАРЬ ЗНАМЕНАТЕЛЬНЫХ ДАТ. ФЕВРАЛЬ

ДИРИХЛЕ И КРОЛИКИ

Самая распространенная формулировка принципа Дирихле, как ни странно, связана с кроликами:

если в n клетках сидит n+1 кролик, то по крайней мере в одной клетке сидит не менее двух кроликов. 


Естественно, что под кроликами и клетками могут пониматься не только голуби и ящики (как в английском варианте формулировки), но и вообще любые объекты, которые в математике принято заменять наборами множеств:
если в множестве А, содержащем n+1 элементов, имеется n элементов, удовлетворяющих каким-либо различным свойствам, то хотя 2 из этих элементов, имеют одинаковое свойство.

Примеры применения принципа Дирихле

1. Пусть диктант писали 30 человек. Вова сделал больше всех ошибок в работе - 13. Покажите, что минимум 3 ученика сделали равное количество ошибок.
Решение всех таких задач начинается с понимания, что мы относим к "клеткам", а что к "кроликам". В данном случае в качестве "кроликов" выступают ученики, а в качестве "клеток" - сделанные ими ошибки. 

Если в первую клетку посадить учеников, которые не сделали ни одной ошибки, во вторую - сделавших две ошибки и т.д., а в тринадцатую посадить Вову, то решить задачу можно опять методом от противного:

Пусть среди класса нет учеников, сделавших одинаковое количество ошибок. Тогда в каждой клетке максимум 2 ученика. Т.к. клеток всего 14 (в последней сидит один Вова), то суммарное количество учеников не может превышать 13*2+1=27 человек. Мы пришли к противоречию, т.к. диктант писало 30 ребят.


2. Докажите, что в любой компании есть два человека, имеющих одинаковое число знакомых в этой компании.  
Решение. Пусть в компании  n человек. Тогда у каждого человека может быть от 0 до  n-1 знакомых. Таким образом, количество знакомых может принимать  различных значений: 0, 1, 2, …, n-1. Поэтому если бы все  n человек имели различное число знакомых, то в компании присутствовало бы по одному человеку, имеющему 0, 1, 2, …, n-1 знакомых. Однако если в компании есть человек, имеющий n-1 знакомых, то он знаком со всеми, и следовательно, в компании не может быть человека, который совсем не имеет знакомых. Полученное противоречие показывает, что в любой компании найдутся два человека с одинаковым числом знакомых.

utm_referrer=https%3A%2F%2Fwww.google.com%2F                                                                          2. https://dzen.ru/a/X0iPfXt1QSuw6RI6


КАЛЕНДАРЬ ЗНАМЕНАТЕЛЬНЫХ ДАТ. ФЕВРАЛЬ

Ио́ганн Пе́тер Гу́став Лежён Дирихле́ 
(13.02.1805 - 05.05.1859)

13 февраля 1805 года в небольшом немецком городке Дюрене родился человек, которому суждено было сделать великие открытия в области математики. Это Иоганн Петер Густав Лежён Дирихле.

К важнейшим достижениям Лежёна Дирихле в науке относятся следующие:
  • Он ввёл такое понятие, как «условная сходимость» и определил её признак;
  • Доказал теорему о прогрессии;
  • Высказал принцип Дирихле;
  • Значительно развил теорию потенциала.
У Дирихле не было монументальных и обширных научных трудов, но все его исследования, наблюдения и трактаты издавались в математических научных журналах. Также сохранились лекции Дирихле. Всё это дало серьёзный толчок развитию математики в Германии, а также послужило примером для начинающих учёных. Труды Дирихле сыграли большую роль в исследовательской деятельности других математиков, которые на их основе сделали новые открытия.
ВОПРОС ДНЯ: КАК СВЯЗАНЫ МЕЖДУ СОБОЙ ДИРИХЛЕ И ГОЛУБИ?

Григорий Остер. Ненаглядное пособие по математике

1. Уходя на пенсию старая учительница подсчитала, что за долгие году  самоотверженного  труда  она  поставила  своим  ученикам  26172 двойки, 11583  тройки, 4884  четверки и  955 пятерок.  Сколько  всего отметок поставила строгая учительница за годы самоотверженного труда?
2.  На  10 одинаковых  больших снежков,  брошенных Колей в Толю, пошло  столько   же  килограммов  снега,  сколько  на  30  одинаковых маленьких снежков,  брошенных Толей  в Колю.  Сколько весят 5 Толиных снежков, если известно, что 2 Колиных весят 120 граммов?
3. Коля  свой дневник с двойками закопал на глубину 5 метров, а Толя закопал  свой дневник  на глубину  12 метров.  На сколько  метров глубже закопал свой дневник с двойками Толя?
4. Вовочка 10 раз дернул за косичку Машу, 5 раз - Дашу, 7 раз - Клаву  и   1  раз,  по  ошибке,  -  завуча  Маргариту  Багратионовну. Спрашивается: сколько  раз дергал  Вовочка за  косички и  что  теперь будет?
5. Строгие  педагоги собрались  на свой  съезд  и  решили  все вместе сфотографироваться.  В первые  4 ряда  встали  учительницы  по математике, по  33 учительницы  в каждом ряду. За ними стояло 7 рядов
учительниц по  русскому языку,  по 27  учительниц в  каждом ряду.  За спинами учительниц  по русскому  языку на  стульчиках стояли учителя и учительницы  по   другим  предметам.  Их  было  столько  же,  сколько учительниц по  математике и русскому языку вместе взятых, и на каждом стульчике стояли  один учитель  и    учительница. Сколько  учительниц собралось на съезд учителей-новаторов?

ИСТОЧНИК: https://lib.ru/ANEKDOTY/ostermat.txt

С НОВЫМ 2025 ГОДОМ!


2025 ГОД С ТОЧКИ ЗРЕНИЯ МАТЕМАТИКИ


1. Квадратное число:  45²=2025;  (20+25)²=2025; 9²×5²=2025;  3²×15²=2025. 

Разложение на простые множители выглядит так: 2025=5²×3⁴.
Сумма цифр числа 2025 равна 9, что также является квадратом (3²).
2. Кубическое число: 2025 можно представить как сумму кубов всех цифр от 0 до 9: 0³+1³+2³+3³+4³+5³+6³+7³+8³+9³=2025.

3. У числа 2025 есть 15 делителей, и оно делится на 15.

 


С НОВЫМ ГОДОМ!

Задача про кондитерскую Снеговика


Снеговик, работающий в лесной кондитерской, устал пересчитывать мелочь покупателей. Поэтому он решил больше не принимать монеты номиналом 1, 2 и 5 копеек.

Переделать ценники Снеговик не успел. Вместо этого он решил округлять сумму каждой покупки до десятка копеек. Например, если товар стоит 5 рублей и 23 копейки, он возьмёт за него 5 рублей и 20 копеек.

Медведь, Заяц, Белка и Ёж проходили мимо кондитерской Снеговика. Медведь решил угостить друзей свежей выпечкой. Долго уговаривать их не пришлось.

Из меню Медведь выбрал пирог с клюквой за 15 рублей 88 копеек, Заяц захотел мешок медовых пряников за 3 рубля 16 копеек, Белка — мешок орешков со сгущёнкой за 3 рубля 35 копеек, а Ёж предпочёл вафельный торт за 12 рублей 49 копеек.

Когда компания собиралась сделать заказ, Снеговик сообщил им, что не примет к оплате монеты меньше 10 копеек.

Медведь быстро сложил цены выпечки: вся покупка обойдётся в 34 рубля 88 копеек. Придётся округлить эту сумму до 34 рублей 90 копеек и переплатить две копейки.

Медведь решил, что можно разбить заказ и сберечь свои деньги. На сколько покупок нужно его разделить, чтобы сэкономить как можно больше?

ИСТОЧНИК: https://lifehacker.ru/novogodnie-zadachi/

С НОВЫМ ГОДОМ!

Задача про семейный ужин

Каждый Новый год семья Морозовых устраивает праздничный ужин. За столом собираются папа, мама, их сын Петя, дядя Коля, тётя Тома и дедушка. Мама отвечает за организацию праздника. По традиции большой прямоугольный стол накрывают в гостиной с двухместным диваном, одним креслом и тремя стульями. Вот вид комнаты сверху:

Самое сложное в подготовке — придумать план рассадки, ведь у каждого члена семьи есть свои пожелания. Мама заранее выслушала их и составила список:

  • Дедушка давно не видел тётю Тому, поэтому хочет сесть напротив неё.
  • Петя хотел бы сесть рядом с дедушкой.
  • Дядя Коля не хочет сидеть во главе стола.
  • У тёти Томы болит спина поэтому она хочет сесть на диван.

Папа всегда сидит во главе стола с левой стороны на кресле, а мама — по левую руку от него на диване.

Получится ли у мамы учесть пожелания всех членов семьи? И где тогда будет сидеть каждый из них?

Важно: считается, что родственники сидят рядом даже в том случае, если их разделяет угол стола.

ИСТОЧНИК: https://lifehacker.ru/novogodnie-zadachi/

КАЛЕНДАРЬ ЗНАМЕНАТЕЛЬНЫХ ДАТ. ДЕКАБРЬ

20 ноября (1 декабря) 1792 г. в Нижнем Новгороде родился русский математик, создатель неевклидовой геометрии, деятель университетского образования и народного просвещения Николай Иванович Лобачевский.
Главным достижением Лобачевского является созданная им новая геометрическая система — так называемая неевклидовая геометрия, или геометрия Лобачевского, изложенная в его труде «О началах геометрии» (1829).
Геометрия Лобачевского (или гиперболическая геометрия) — одна из неевклидовых геометрий, геометрическая теория, основанная на тех же основных аксиомах, что и обычная евклидова геометрия, за исключением аксиомы о параллельных прямых, которая заменяется её отрицанием.
Евклидова аксиома о параллельных (точнее, одно из эквивалентных ей утверждений, при наличии других аксиом) может быть сформулирована следующим образом: на плоскости через точку, не лежащую на данной прямой, можно провести ровно одну прямую, параллельную данной.
В геометрии Лобачевского вместо неё принимается следующая аксиома: через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её.


КТО ОПОЗДАЕТ НА СВИДАНИЕ?

 🕒 🕞
Сергей и Оля договорились встретиться на свидании у входа в парк ровно в 9 часов вечера. Но вот ведь незадача, и у Сергея и у Оли часы идут-то неверно! У Сергея часы отстают на 3 минуты, однако он считает наоборот, что они спешат на 2 минуты. У Оли часы спешат на 2 минуты, но она считает, что они отстают на 3 минуты. Как Вы думаете, кто из них опоздает на свидание?