ПОДГОТОВКА К ОЛИМПИАДАМ, 5 КЛАСС. 21-Я НЕДЕЛЯ
Можно ли разрезать квадрат 10 х 10 на прямоугольники 1 х 4?
Отметьте на доске 8 х 8 несколько клеток так, чтобы любая (в том числе и любая отмеченная) клетка граничила по стороне ровно с одной отмеченной клеткой.
Фигура «верблюд» ходит по шахматной доске ходом типа (1, 3). Можно ли пройти ходом «верблюда» с произвольного поля на соседнее?
В каждой клетке доски в 5 х 5 клеток сидел жук. Затем каждый жук переполз на соседнюю (по стороне) клетку. Докажите, что осталась хотя бы одна пустая клетка.
Дана доска в 19 х 19 клеток. На каждой клетке поставлено по шашке. Можно ли переставить шашки так, чтобы каждая шашка оказалась на соседней клетке (по горизонтали или по вертикали, но не диагонали)?
Докажите, что плоскость можно раскрасить девятью красками так, что никакие две точки одного цвета не будут находиться на расстоянии 1 м друг от друга.